An iron-regulated gene required for utilization of aerobactin as an exogenous siderophore in Vibrio parahaemolyticus.
نویسندگان
چکیده
A previous investigation using the Fur titration assay system showed that Vibrio parahaemolyticus possesses a gene encoding a protein homologous to IutA, the outer-membrane receptor for ferric aerobactin in Escherichia coli. In this study, a 5.6 kb DNA region from the V. parahaemolyticus WP1 genome was cloned and two entire genes, iutA and alcD homologues, were identified which are absent from Vibrio cholerae genomic sequences. The V. parahaemolyticus IutA and AlcD proteins share 43 % identity with the Escherichia coli IutA protein and 24 % identity with the Bordetella bronchiseptica AlcD protein of unknown function, respectively. Primer extension analysis revealed that the iutA gene is transcribed in response to low-iron availability from a putative promoter overlapped with a sequence resembling a consensus E. coli Fur-binding sequence. In agreement with the above finding, V. parahaemolyticus effectively utilized exogenously supplied aerobactin for growth under iron-limiting conditions. Moreover, insertional inactivation of iutA impaired growth in the presence of aerobactin and incapacitated the outer-membrane fraction from iron-deficient cells for binding (55)Fe-labelled aerobactin. These results indicate that the V. parahaemolyticus iutA homologue encodes an outer-membrane protein which functions as the receptor for ferric aerobactin. Southern blot analysis revealed that the iutA homologues are widely distributed in clinical and environmental isolates of V. parahaemolyticus. However, additional genes required for ferric aerobactin transport across the inner membrane remain to be clarified.
منابع مشابه
Identification and characterization of genes required for utilization of desferri-ferrichrome and aerobactin in Vibrio parahaemolyticus.
During the course of our investigation on the iron acquisition systems in Vibrio parahaemolyticus, a causative agent of seafood-related gastroenteritis, we found that this species utilizes desferri-ferrichrome for growth as a heterologous siderophore (a siderophore produced by other bacteria and fungi) under iron-limiting conditions. N-Terminal amino acid sequence analysis of the iron-repressib...
متن کاملAnalysis of a DtxR-regulated iron transport and siderophore biosynthesis gene cluster in Corynebacterium diphtheriae.
This report describes a genetic locus associated with siderophore biosynthesis and transport in Corynebacterium diphtheriae. A BLAST search of the C. diphtheriae genome identified a seven-gene cluster that included four genes, designated ciuA, ciuB, ciuC, and ciuD, whose predicted products are related to ABC-type iron transporters. Downstream from ciuD is the ciuE gene, whose predicted product ...
متن کاملThe Vibrio parahaemolyticus small RNA RyhB promotes production of the siderophore vibrioferrin by stabilizing the polycistronic mRNA.
High-affinity iron acquisition in Vibrio parahaemolyticus is mediated by the cognate siderophore vibrioferrin. We have previously reported that the vibrioferrin biosynthesis operon (pvsOp) is regulated at the transcriptional level by the iron-responsive repressor Fur (T. Tanabe, T. Funahashi, H. Nakao, S. Miyoshi, S. Shinoda, and S. Yamamoto, J. Bacteriol. 185:6938-6949, 2003). In this study, w...
متن کاملIdentification and characterization of pvuA, a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus.
We previously reported that Vibrio parahaemolyticus expresses two outer membrane proteins of 78 and 83 kDa concomitant with production of siderophore vibrioferrin in response to iron starvation stress and that these proteins are the ferric vibrioferrin receptor and heme receptor, respectively (S. Yamamoto, T. Akiyama, N. Okujo, S. Matsuura, and S. Shinoda, Microbiol. Immunol. 39:759-766, 1995; ...
متن کاملGenetics and molecular biology of siderophore-mediated iron transport in bacteria.
The possession of specialized iron transport systems may be crucial for bacteria to override the iron limitation imposed by the host or the environment. One of the most commonly found strategies evolved by microorganisms is the production of siderophores, low-molecular-weight iron chelators that have very high constants of association for their complexes with iron. Thus, siderophores act as ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 149 Pt 5 شماره
صفحات -
تاریخ انتشار 2003